
Subject Requirement Compliance Details
Software catalog

C1
Catalog library The IDP shall support Github SaaS / Gitlab (SaaS and self hosted) /

Azure Devops / Bitbucket Cloud / Bitbucket server
C2 Catalog library It is possible to ingest yaml and READMEs in the software catalog

C3
Catalog library The IDP shall support ingesting data from common CI tools to track

pipeline workflows

C4
Catalog library

Support for Cloud vendors: AWS, GCP, Azure
Ingest data from EKS, Resource Groups, VPC, Virtual Machines,
Functions/Lambdas, Buckets, IAM policies

C5 Catalog library Ingest catalog data from Argo CD
C6 Catalog library Ingest catalog data from Kubernetes
C7 Catalog library Ingest data from Jira and all the tickets, status, projects
C8 Catalog library Ingest data from Pagerduty, Opsgenie
C9 Catalog library Ingest tickets from ServiceNow

C10 Catalog library Ingest CVE related to Git projects from Snyk, Sonarqube, Wiz
C11 Catalog library Ingest data from Cost tools: AWS Cost Explorer, Kubecost, OpenCost
C12 Catalog library Ingest data from Terraform Cloud to represent tf states and projects
C13 Ingestion Method Ability to ingest data from any webhook from any 3rd party solution link to doc
C14 Ingestion method Ability to ingest data from API link to doc
C15 Ingestion method Ability to ingest data from Gitops with a yaml file in a repo

C16
Ingestion method Ability to ingest data from Terraform: ingest catalog entities from

Terraform ingestion
C17 Ingestion method Ability to create or edit a catalog item directly in the UI

C18
Extensibility Ability to add a new plugin or integration by ourselves from an

unsupported vendor or data source. provide link to documentation

C19
Extensibility

Ability to add custom properties to an existing data model from a
vendor. For instance ability to add the subscription description or
domain or user to any object in the catalog

C20
Extensibility

Ability to map a data source to a new custom property using JQ. For
instance add a new metadata that is not present in the IDP by default
for the 3rd party vendor's API

C21
Extensibility Extending an integration to additional properties shall not require front

end or backend coding
C22 Extensibility Ability to create a new plugin or integration by ourselves

C23

Data model

It is possible to display properties from various entities of various
types in the catalog in a single view
For instance: display the CPU usage of the K8S deployment of a
service ingested in Github
Or how many vulnerabilities have been found by a security scanner in
the service view without leaving the page

C24
Data model Ability to create relations between any elements of the catalog

describe how flexible can the mapping be and what prerequestes
are required

C25
Data model Ability to create relations between any elements of the catalog based

on similarities in their name

Subject Requirement Compliance Details

C26
Data model

Ability to create relations between any elements of the catalog based
on similarities in any of their properties (tags, CRD or any other
custom property)

C27
Data Model

Ability to ingest data from various sources into a single entity.
For instance Ingest a service from Github and enrich a few of its
properties using Gitops or API ingestion

C28

Data Model

A change in the data source is reflected in real time in the catalog and
should be event-based (not through scheduled syncs)
Example: A change in a Kubernetes environment or creation of a new
EKS cluster should be reflected within seconds in the catalog

C29

Data Model

The catalog shall offer a graph visualization of the intereralted entities
in the catalog.
Such as service upstream/downstream, or service under a cloud
deployment

C30
Data Model It is possible to display calculated properties in the catalog view from

multiple other properties of the entity

C31
RBAC We can define granular controls on who can see what pages of the

catalog prodive doc

C32
RBAC

We can define locked filters or view so a user can only see certain
entities in a catalog, while another user can see others based on his
role or team he belongs to

C33
RBAC

The catalog supports dynamic filters, showing the user catalog entities
that are specific to him (such as the user's Pull Requests, the user's
services)

C34
RBAC Certain views in the catalog can be locked to prevent changing filters

or presenting hidden data

Scorecards
S1 Scorecards The IDP shall allow to create flexible scorecards from any data source

S2

Scorecards

Data from multiple data source can be part of a single Scorecard
For instance: a service scorecard shall ensure there is on call
engineer in Pagerduty, a README in Github and less than 5 high
vulnerabilities from Snyk

S3
Scorecards

The IDP shall offer consolidated views of Scorecards with Group By
options, such as "group by team", "group by Domain" or any other
property

S4
Scorecards It is possible for a team to see the aggregated statistics of all rules in a

summarized manner

S5
Scorecards The IDP shall be able to automatically create Jiras for Scorecards that

are not met

S6
Scorecards Scorecards criteria can include the following operators to interrogate

any property: =, <>, >, contains, endWith, isEmpty, beginsWith

S7
APIs

Scorecards can be queried from APIs and integrated into a CI. We
can block a CI build if a service is not meeting a certain scorecard
level

S8
Notifications The IDP shall be able to send notifications in case of a degradation of

a scorecard

S9
Notifications The IDP shall be able to automatically create Slack notifications

providing summaries of Scorecards that are not met

Subject Requirement Compliance Details
Developer self-service actions

A1 Self Service Actions The IDP shall offer Self Service actions capabilities

A2

Advanced Forms

The Self Service action shall offer to create any custom form for
developers, that shall include: free text with Regex control, number,
boolean toggle, email, Data & Time, encrypted secret, URl, dropdown
and others input types

A3 Advanced Forms The Self Service form shall include selection of entities in the catalog

A4
Advanced Forms The forms shall offer the ability to filter the dropdown's available

options based on a previous input

A5

Advanced Forms

The form shall provide you a choice of entities that is filtered based on
previous answers in a flexible manner.
To illustrate this, if a user picked AWS Region US east 1, the form that
only offer the available EKS clusters within that region dynamically
available in the catalog

A6
Advanced Forms The forms offer the option to hide/show a form based on a previous

use input

A7
Advanced Forms

The form shall offer to filter the dropdown's available options based on
the properties of the entity on which the action is performed

A8
RBAC The form shall offer to filter the dropdown's available options based on

properties of the user that executes the action

A9
RBAC It shall be possible to configure who can trigger a self service action

based on the team they belong to
A10 RBAC It is possible to configure an approval in a self service action

A11
RBAC

It is possible to dynamically ensure that the user who is running the
action is assigning the Microservice to his team in the form. He should
not be offered to fill someone else's team

A12 Backend It is possible to trigger a CI pipeline job directly specify which CIs is supported
A13 Backend It is possible to trigger a generic Webhook

A14
Backend It is possible to trigger a CI that is on premise, not accessible from a

direct connection, using an agent
describe how this is supported and if there are limitations in the
scenarios supporters or prerequisites on the customer's side

A15 Backend It is possible to chain Self Service actions
A16 Backend Ability to edit a yaml file within a github repo through a form in the IDP

A17
Dev Experience The developer can track the progress of a self service action, such as:

pending approval, in progress, failure or success

A18
Dev Experience It is possible to add custom messages for the developer to track the

progress of self service actions

A19
Trigger Automation It is possible to configure an automatic trigger of a self service action

based on a entity change or a scorecard degradation

Dashboards, Pages & Customization
D1 Customization The IDP shall allow the creation of custom pages or dashboards

D2
Customization it is possible to control the Entities properties that are displayed in the

UI

D3
Customization We can create multiple views (more detailed/less detailed) for the

users, showing or hiding properties for different types of users

Subject Requirement Compliance Details

D4
Customization Custom Dashboards can have a custom format, such as: creation of

html text, iFrame or widgets
D5 Customization The structure of the custom dashboard is configurable and flexible

D6
Customization The custom pages can represent custom dynamic data from the

catalog
D7 Customization The order of the pages can be modified
D8 Customization Pages of the catalog can be grouped or structured
D9 Customization Customizing a page view does not require front end coding

D10
Customization It is possible to display data any data source of the catalog in a single

Dashboard page

D11
RBAC The permissions of who can seen a custom page are configurable

(per team, per user)

D12
RBAC The views of a custom page can be dynamically configured based on

who is the logged in user ("my Pull Requests", "my services")

D13
RBAC

The IDP shall offer the ability to provide different views and
experiences for different user roles: Managers, Developers, Product
Managers

General Requirements, Networking & Security
G1 General Requirements The solution shall support Okta, Azure AD, Google Workspaces

G2
General Requirements The IDP shall support multiple tenants for multiple independant

Business Units

G3
General Requirements It shall be possible to store the IDP's configuration as a code in a Git

repo

G4
General Requirements It shall be possible to store the Self Service actions and Scorecards as

a Code in a Git repo

G5
General Requirements It shall be possible to deploy the IDP using IaC such as Terraform or

Pulumi
G6 API The IDP shall have extensive APIs to change the IDPs configuration Send documentation
G7 API The IDP shall have extensive APIs to ingest new entities in the catalog

G8
API The IDP shall have extensive APIs to update entities properties in the

catalog

G9
API It is possible to trigger a self service action from API, and integrate it in

a CI for instance

G10
Search The IDP shall offer an effective Global Search to find any entity in the

entire catalog based on its name only

G11
Search The IDP shall offer advanced search capabilities over APIs, combining

multiple criteria (OR, AND, CONTAINS) as well as filtering

G12
Security It is possible to deploy the catalog without any ingress connectivity to

our network, by Push data only

G13
Security The solution does not require to host secrets of our systems in the

vendors' cloud
G14 Security The vendor shall be SOC 2 compliant send doc
G15 Security The vendor shall be ISO 27001 send doc
G16 Documentation The documentation shall be comprehensive and publicly available Share link

Subject Requirement Compliance Details
Services

E1
Customer success The vendor shall offer postsales services to help us implement the

IDP
E2 Customer success The vendor shall offer Slack support

E3
Support All offered plugins and integrations mentionned in this RFP answer

shall be actively supported by the vendor

